GIF89a; EcchiShell v1.0
//proc/self/root/usr/include/python2.7/

#include #include extern jmp_buf PyFPE_jbuf; extern int PyFPE_counter; extern double PyFPE_dummy(void *); #define PyFPE_START_PROTECT(err_string, leave_stmt) \ if (!PyFPE_counter++ && setjmp(PyFPE_jbuf)) { \ PyErr_SetString(PyExc_FloatingPointError, err_string); \ PyFPE_counter = 0; \ leave_stmt; \ } /* * This (following) is a heck of a way to decrement a counter. However, * unless the macro argument is provided, code optimizers will sometimes move * this statement so that it gets executed *before* the unsafe expression * which we're trying to protect. That pretty well messes things up, * of course. * * If the expression(s) you're trying to protect don't happen to return a * value, you will need to manufacture a dummy result just to preserve the * correct ordering of statements. Note that the macro passes the address * of its argument (so you need to give it something which is addressable). * If your expression returns multiple results, pass the last such result * to PyFPE_END_PROTECT. * * Note that PyFPE_dummy returns a double, which is cast to int. * This seeming insanity is to tickle the Floating Point Unit (FPU). * If an exception has occurred in a preceding floating point operation, * some architectures (notably Intel 80x86) will not deliver the interrupt * until the *next* floating point operation. This is painful if you've * already decremented PyFPE_counter. */ #define PyFPE_END_PROTECT(v) PyFPE_counter -= (int)PyFPE_dummy(&(v)); #else #define PyFPE_START_PROTECT(err_string, leave_stmt) #define PyFPE_END_PROTECT(v) #endif #ifdef __cplusplus } #endif #endif /* !Py_PYFPE_H */